Lecture 4: Relation, Equivalence relation

Binary Relation: Let A and B be non-empty sets. A binary relation or simply a relation
R from A to B is a subset of A x B, that is, RC A x B.

If (a,b) € R, then we also say that a is related to b by R or a Rb.
e If A= B, then we say that R is a relation on A.
The domain of R = {a € A : a Rb for some b € B}.

The range of R ={b € B : a Rb for some a € A}.

Let A, B be a sets with |A| = m and |B| = n. Then there are 2" relations from A to
B.

Examples:

1. Let A={1,2,3}and B = {z,y,2},and let R = {(1,y), (1,2),(3,y)}. Since R C AxB,
R is a relation from A to B. The domain of R is {1,3} and the range of R is {y, z}.

2. Let S be a collection of sets. Then set inclusion C is a relation on A.
3. The divisibility of two numbers in N is a relation on N.

4. Let L be the set of lines in the plane. Then perpendicularity of two lines /1 and I in
the plane gives a relation on L.

Complement of relation: Let R be a relation from A to B. The complement of R, denoted
by R¢, is a relation from A to B such that R® = {(a,b) : (a,b) € R}.

Inverse of relation: Let R be a relation from A to B. The inverse of R, denoted by R~*
is a relation from B to A such that R~ = {(b,a) : (a,b) € R}.

Composition of relation: Let A, B and C be sets, and let R be a relation from A to B
and S be a relation from B to C, that is, RC A x B and S C B x . Then

Ro S ={(a,c) : there exists b € B for which (a,b) € R and (b,c) € S}.

Example: Let A ={1,2,3,4}, B = {a,b,c,d}, C = {z,y,z}. Let R ={(1,a),(2,d),(3,a),
(3,0),(3,d)} and S = {(b, x), (b, 2), (¢,y), (d, z)} be relations from A to B and from B to C'
respectively. Then Ro S = {(2,2),(3,x),(3,2)}.

Types of relation: Let A be a set and R be a relation on A.
1. Reflexive Relation: R is reflexive if (a,a) € R, that is, aRa for all a € A.
2. Symmetric Relation: R is symmetrix if aRb then bRa.
3. Antisymmetric Relation: R is called antisymmetric if aRb and bRa then a = b.

4. Transitive Relation: R is called transitive: if aRb and bRc then aRec.



Example. Let A = {1,2,3,4}. Consider the following relations on A.
Ry = {(1,1),(1,2), 2.3, (1,3), (4, )},

Ry = {(1,1), (1,2), (2,1),(2,2), (3,3), (4, )},

Ry = {(1,3), (2, 1)},

R4 = 0, the empty relation,

Rs = A x A.

Determine, which of the relations are: (a) reflexive, (b) symmetric, (¢) antisymmetric, (d)
transitive.

Solution: Since (2,2) ¢ Ry, R3, Ry. Hence, these relations are not reflexive. Since (a,a) €
Ry, Ry for every a € A, Ry and Ry are reflexive.

Ry is not symmetric since (1,2) € Ry but (2,1) ¢ R;. Similarly R3 is not symmetric. All
other relations are symmetric.

Ry is not antisymmetric since (1,2),(2,1) € Ry but 1 # 2. Similarly Rs;. All the other
relations are antisymmetric.

Rs3 is not transitive since (2,1),(1,3) € Rs but (2,3) ¢ Rs. All the other relations are
transitive.

Equivalence Relation: A relation R on a set S is called an equivalence relation if it is
reflexive, symmetric, and transitive.

Examples:
1. Let S be a set of lines in the plane. The relation of parallel is an equivalence relation.

2. The relation of inclusion C is not equivalence relation. It is reflexive and transitive
but not symmetric, since A C B does not imply B C A.

3. Let m be a fixed positive integer. Two integers a and b are said to be congruent moulo
m, written as a = b(modm), if m divides a — b. This relation of congruence modulo
m is an equivalence relation on Z.

Equivalence Class: Let R be an equivalence relation on a set S. For a € S, the set
la] = {x : (a,x) € R} is called the equivalence class of a.

The collection of all such equivalence classes is denoted by S/R, thatis, S/R = {[a] : a € S}.
The set S/R is also called quotient set of S by R.

Example In the above Example 3, the relation of congruent modulo m on the set of integers
Z. Let m = 5. Then we see that

0] ={...,—10,-5,0,5,10,...}, that is, [0] = {5k : k € Z},

1] ={...,-9,-4,1,6,11,...}, that is, [1] = {5k + 1 : k € Z},
2] ={...,—8,-3,2,7,12,...}, that is, [2] = {bk+2 : k € Z}.
8] ={...,—7,-2,3,8,13,...}, that is, [3] = {5k + 3 : k € Z}.



4] ={...,—6,—1,4,9,14,.. .}, that is, [3]| = {bk+4 : k € Z}.
The above are the only distinct equivalence classes. Thus Z/R = {[0], [1], [2], [3], [4]}
Theorem 1: Let R be an equivalence relation on a set S.

1. For each a € S, a € [a], that is, every element lies in its own equivalence class.

2. For each a,b € S, a Rb if and only if [a] = [b], that is, if any two elements are related
by R then they have same equivalence class.

3. For each a,b € S, [a] = [b] or [a] N [b] = 0.
Proof: Since R is reflexive, a Ra for each a € S. So a € [a]. This proves first part.

Second Part: Suppose a Rb and = € [a]. Then x Ra. Since a Rb and R is transitive, x R b.
So z € [al], and [a] C [b]. Similarly we see that [b] C [a]. Combining both, we get [a] = [b].
Conversely, let [a] = [b]. This means, if z € [a] then x € [b] and therefore zRa (or aRx since
R is symmetrix) and zRb. Since R is transitive, aRb.

Third Part: let [a] N [b] # 0 and « € [a] N [b]. Then xRa (so aRx) and xRb imples aRb. By
second part, [a] = [b].

Partition of a set: Let S be a non-empty set. A collection P, containing subsets A;, As, ...
of S, is called a partition of S if: UA; =S and A;NA; =0 for i # j.

Example: Let S = {1,2,...,9}. Consider the following collections of subsets of S.
P =1{1,3,5},{2,6},{4,8,9}],

P, =1[{1,3,5},{2,4,6,8},{5,7,9}],

Py =1[{1,3,5},{2,4,6,8},{7,9}].

P is not a partition, since 7 ¢ P;. P, is not a partition, since {1,3,5} and {5,7,9} are not
disjoint. Note that P; is a partition of S.

Theorem 2: Let R be an equivalence relation on a nonempty set S. The collection S/ R of
all equivalence classes gives a partition of S.

Proof: Proof follows from Theorem 1.

Counting partitions: The total number of partitions of an n-element set is the Bell number
B,,. The first several Bell numbers are By = 1,B; = 1,By, = 2, B3 = 5, B4 = 15, By = 52,
and Bg = 203. Bell numbers satisfy the recurrence relation (we will teach recurrence relation
in coming lectures) involving binomial coefficients: B,i1 =Y ;_, (Z) By,

Hint: It can be explained by observing that, from an arbitrary partition of n + 1 items,
removing the set containing the first item leaves a partition of a smaller set of k items for
some number k that may range from 0 to n. There are (Z) choices for the k items that remain
after one set is removed, and Bj, choices of how to partition them.

Bell triangle: The Bell numbers may also be computed using the Bell triangle in which
the first value in each row is copied from the end of the previous row, and subsequent values



are computed by adding two numbers, the number to the left and the number to the above
left of the position.

Here are the first five rows of the triangle constructed by the above rules:

1

1 2

2 3 5
5 7 10 15

15 20 27 37 52
The Bell numbers appear on both the left and right sides of the triangle

Applications in Counting the Equivalence relations and Factorizations:

e Recall the number of ways of partitioning a finite set into subsets is equal to the number
of equivalence relations on the set.

e If a number N is a square-free positive integer, (meaning that it is the product of
some number n of distinct prime numbers), then B, gives the number of different
multiplicative partitions of N. These are factors of N into numbers greater than one,
treating two factorizations as the same if they have the same factors in a different
order. For instance, 30 is the product of the three primes 2,3, and 5, and has B3 =5
factorizations:

30=2x15=3x10=5x6=2x3x5.



